

SLAM GO POST 数据处理常见问题 及解决方法

编制	:深圳飞马机器人科技有限公司
版本号	• V1.0
日期	:2021-03-11

目录

1.1	解算提示建图飘飞解算失败	1
1.2	解算提示控制点与提取点数量不一致	3
1.3	解算后进度条无变化	5
1.4	解算提示 srtk 有效数据数量为 0	6
1.5	解算提示优化类型错误	6
1.6	解算提示 RTK 轨迹文件错误	8

版权声明

本文档版权由深圳飞马机器人科技有限公司所有。任何形式的拷贝或部分拷贝都是不允许的,除非是出于有保护的评价目的。

本文档由深圳飞马机器人科技有限公司提供。此信息只用于数据处理与应用 部门的成员或咨询专家。特别指出的是,本文档的内容在没有得到深圳飞马机器 人科技有限公司书面允许的情况下,不能把全部或部分内容泄露给任何其它单位。

1.1 解算提示建图飘飞解算失败

1.问题现象

使用 SLAM GO POST Pro 时,点击一键解算或点云建图后,软件提示【建图 飘飞,解算失败】

[18:42:40] 建图飘飞! [18:42:42] 没有可用的点云文件! [18:42:42] 解算失败!

图 建图飘飞

2.产生原因

该问题产生的原因可能为以下几点:

1.开始采集后没有按要求在地面静止;

2.采集场景为弱纹理或者空旷无地物,如隧道、荒漠;

3.采集过程中,设备离墙体、树木等物体太近;

4.采集过程中,转弯时速度过快,没有在转弯前静止,或者在狭小空间内转 弯。

3.解决方法

点云建图过程中数据飘飞,可以使用以下方法处理:

1.如果使用高精度模式解算,切换成快速模式进行解算;

2.使用分段处理,将成果分段输出,具体操作方法如下:

打开成果文件夹中的 temp 文件夹里的 log 文件,最下面一行提示"Exit: pose has drifted!!!"表示数据跑飘,找到上面"Log I cpu 126.301 data 165.961 stamp 105318.998 position x -72.477829 y -33.911373 z -77.621452"的最后一行,其中 data 后的数值为数据跑飘的时间。

先使用数据段时长功能解算前半段数据,然后使用忽略数据段时长功能解算 后半段数据,由于后半段数据不包含开始地面静止 60s 的数据,所以只能用快速

模式解算。

Log cpu 118.140 data 151.394 stamp 105304.432 position x -87.740730 y -39.673676 z -112.043266	
Log I cpu 118.669 data 152.410 stamp 105305.448 position x -86.214546 y -38.958515 z -108.176659	
Log I cpu 119.277 data 153.497 stamp 105306.535 position x -84.465393 y -38.806610 z -104.215324	
Log I cpu 119.832 data 154.535 stamp 105307.572 position x -82.786919 y -38.745983 z -100.261833	
Log +++++++++++++++++++++++++++++++++++	
Log I cpu 120.479 data 155.636 stamp 105308.673 position x -81.144707 y -38.996563 z -96.803802	
Log I +++++++++++++++++++++++++++++++++++	
Log I cpu 121.073 data 156.647 stamp 105309.684 position x -79.814575 y -40.111832 z -93.908310	
Log I +++++++++++++++++++++++++++++++++++	
Log I cpu 121.634 data 157.653 stamp 105310.690 position x -78.823830 y -41.100086 z -91.976067	
Log +++++++++++++++++++++++++++++++++++	
Log I cpu 122.185 data 158.658 stamp 105311.695 position x -78.974892 y -41.450073 z -92.439568	
Log +++++++++++++++++++++++++++++++++++	
Log I cpu 122.781 data 159.664 stamp 105312.701 position x -78.811554 y -41.024845 z -92.079147	
Log +++++++++++++++++++++++++++++++++++	
Log I cpu 123.316 data 160.669 stamp 105313.706 position x -78.712463 y -41.123997 z -92.039665	
Log I best index: 150, best sc: 0.799538	
Log I local loop: 147, 163, 0.799538	
Log I cpu 123.863 data 161.762 stamp 105314.799 position x -78.210663 y -40.364994 z -90.860321	
Log I cpu 124.352 data 162.781 stamp 105315.818 position x -76.923508 y -38.255119 z -87.836990	
Log I cpu 125.044 data 163.868 stamp 105316.905 position x -75.146988 y -35.503147 z -83.494148	
Log I cpu 125.687 data 164.892 stamp 105317.929 position x -73.887291 y -34.155991 z -80.787292	
Log I cpu 126.301 data 165.961 stamp 105318.998 position x -72.477829 γ -33.911373 z -77.621452	
Log I stamp 105319.961189 v (2.347880, -0.179563, 5.226792)	
Log I Exit: pose has drifted!!!	

图 建图飘飞 log

图 解算前半段数据参数设置

💐 Slam解算参数设置	1		
参数 建图米刑	○ 盾始建图	○ 建图优化	
建图关王	○ 快速模式	○ 高精度	
使用设备	○ 使用GPV	◯ 使用CPU	
采集稳定度【1-5】	1		•
忽略数据段	170.00		\$ 秒
数据段时长	0.00		• 秒
点云定向	○ 刚体	○ 非刚体	
其他结果	□ 全景图	□ 赋色点云	
其他设置	□ 首尾同点	🗹 建图实时显示	
		确定	取消

图 解算后半段数据参数设置

1.2 解算提示控制点与提取点数量不一致

1.问题现象

使用 SLAM GO POST Pro 时,在工程创建后导入控制点文件,一键解算提示 【控制点与提取点数量不一致,请编辑控制点!】。

[10:02:07] 点云数据准备中		_
[10:15:56] 控制点与提取点数量不一致,	请编辑控制点!	
[10:15:57] 点云定向失败!		
[10:15:57] 解算失败!		

图 控制点数量不一致提示提示

2.产生原因

该问题为导入的控制点数量与采集的控制点数量不一致。产生原因可能为一 下几点:

1.采集过程中有异常停留,导致采集的控制点数量变多;

2.使用手机 APP 操作时多或少点控制点;

3.SLAM 2000 使用时手柄按钮多或少点控制点。

3.解决方法

解决方法为编辑控制点文件或使用控制点编辑功能,编辑后重新一键解算。

编辑控制点具体操作方法如下:

1.在【数据管理窗口】-【控制点数据】-【控制点】处右键单击,选择【编辑控制点】,进入控制点编辑界面;

图 编辑控制点

2.点击下方待编辑的控制点,根据上图的相对关系判断控制点与匹配点的对应关系,在上方工具条处修改匹配点序号,将控制点与正确的匹配点对应,使多余的匹配点在最后轮空即可,轮空的匹配点将不参与任何计算;

标系统: 🗹 本	地坐标系	投影坐标系		坐标	类型	WGS84 UTM	M 🖌	投影类型	UTM zor	ie 1N		~
制点名称: 2	匹配点序号:	2 X: 5	.40	9 Y:	4	.504	Z: -4.784	x	39.133 y	56.33	z:	-1.373
考控制点:						匹配控制	』点:					
									4	É.		
									A.8. (**	2		
		a segu	_									
控制点名称	匹配点序号	检查点		控制点X		控制点Y	控制点Z	匹配点	x	匹配点y	1.000	配点z
控制点名称 1 2	匹配点序号 1 2	检查点	5	控制点X 34.077 35.409	4	控制点Y ?1.254 75 504	控制点Z -4.78	匹配点 27.384 39.133	× -0.90	匹配点y 1	-1.388	配点z
控制点名称 1 2 3	匹配点序号 1 2 3	<u>检查点</u> ビ 口	5	控制点X 34.077 35.409)9.594	4	控制点Y ?1.254 ?5.504 38.166	控制点Z -4.78 -4.784 -4.762	匹配点 27.384 39.133 -8.218	× -0.90 56.3 60.8	匹配点y 11 33	-1.388 -1.373 -1.37	配点z
控制点名称 1 2 3 4	匹配点床号 1 2 3 4	<u>検査点</u> ビ ロ ロ	5 5 5	控制点X 14.077 i5.409)9.594 i4.184	4 4 4 4	控制点Y 21.254 75.504 38.166 37.023	控制点Z -4.78 -4.784 -4.762 -4.813	匹配点 27.384 39.133 -8.218 -62.754	× -0.90 56.3 60.8 50.1	匹配点y 1 39	-1.388 -1.373 -1.37 -1.452	配点z
控制点名称 1 2 3 4 6	匹配点序号 1 2 3 4 5	检查点 ☑ □ □ ☑ □	5 5 5 5 5 5	控制点X 14.077 i5.409)9.594 i4.184 i4.595	4 4 4 4 4	控制点Y 21.254 75.504 38.166 37.023 29.466	控制点Z -4.78 -4.784 -4.762 -4.813 -4.774	27.384 39.133 -8.218 -62.754 -12.92	× -0.90 56.3 60.8 50.1 0.36	匹配点y 1 3 39 78	PC -1.388 -1.373 -1.37 -1.452 -1.369	配点z

图 编辑控制点界面

3.勾选检查点选项时,此点不再参与定向计算,仅作为检查点输出外符合精 度报告。

4.控制点编辑后点击应用,点击数据处理工具栏的【一键解算】,选择不替 换已有建图成果,输出定向并优化后成果数据。

注:如果后续坐标转换使用非刚性转换,必须编辑控制点文件,将控制点顺 序编辑与匹配点顺序一致,不能使用控制点编辑功能变换匹配点顺序,否则会定 向失败。

1.3 解算后进度条无变化

1.问题现象

使用 SLAM GO POST Pro 时,点击一键解算后,进度条无变化,也没有提示 解算失败,再次点击一键解算,软件提示【当前数据尚在处理当中】。

当前状态:	
当前处理进度:	0%
总进度:	0/1
运行窗口	

图 一键解算进度条无变化

2.产生原因

该问题产生原因为 imu 或光栅文件记录不全,最后一行没有记录完整。

/////////////////////////////////////
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
458035.196015,0.597412,-0.114703,9.943327,0.009578,0.077156,-0.042569,0.972745,0.005466,-0.034665,0.221726
458035.197015,0.559178,-0.043014,9.893145,0.007450,0.076092,-0.039908,0.972749,0.005447,-0.034564,0.221727
458035.198015,0.511385,-0.035845,9.881196,0.006917,0.073964,-0.032991,0.972754,0.005425,-0.034429,0.221728
458035.199015,0.618919,-0.112313,10.029355,0.008514,0.073432,-0.025009,0.972755,0.005364,-0.034380,0.221730
458035.200015,0.664322,-0.097976,10.000679,0.011174,0.075028,-0.021817,0.972756,0.005323,-0.034364,0.221731
458035.201015,0.537671,-0.083638,9.831014,0.012771,0.073964,-0.022349,0.972759,0.005272,-0.034262,0.221733
458035.202015,0.485099,-0.160106,9.859690,0.012771,0.072367,-0.022881,0.972763,0.005157,-0.034134,0.221737
458035.203015,0.578295,-0.205510,9.924210,0.010642,0.072367,-0.019688,0.972765,0.005027,-0.034081,0.221742
458035.204015,0.580685,-0.164886,9.807117,0.010110,0.072899,-0.012239,0.972766,0.004927,-0.034029,0.221745
458035.205015,0.511385,-0.150548,9.893145,0.013303,0.073964,-0.004257,0.972770,0.004829,-0.033920,0.221749
458035.206015,0.604581,-0.169665,10.132110,0.015431,0.076092,0.003193,0.972771,0.004734,-0.033874,0.221752
458035.207015,0.707336,-0.191172,10.003069,0.017028,0.075028,0.013835,0.972770,0.004642,-0.033912,0.221755
458035.208015,0.571126,-0.250913,9.788000,0.018624,0.072367,0.025541,0.972770,0.004483,-0.033871,0.221761
458035.209015,0.427747,-0.258082,9.917041,0.020220,0.072899,0.032459,0.972775,0.004299,-0.033721,0.221768
458035.210015,0.451644,-0.234186,10.026965,0.020752,0.076624,0.037248,0.972779,0.004140,-0.033582,0.221775
458035.211015,0.549619,-0.272420,9.852521,0.020220,0.078753,0.044697,0.972780,0.003970,-0.033531,0.221781
458035.212015,0.614140,-0.296316,9.799949,0.022349,0.076624,0.053743,0.972779,0.003796,-0.033534,0.221787
458035.213015,0.580685,-0.238965,10.041303,0.025009,0.075028,0.062257,0.972780,0.003662,-0.033492,0.221793
458035.214015,0.528112,-0.200730,10.112992,0.026606,0.077688,0.070771,0.972782,0.003550,-0.033403,0.221797
458035.215015,0.552009,-0.243744,9.895535,0.029266,0.078753,0.080349,0.972783,0.003411,-0.033349,0.221803
458035.216015,0.578295,-0.236575,9.842962,0.031395,0.076624,0.087799,0.972784,0.003283,-0.033316,0.221808
458035.217015,0.532892,-0.136210,9.950497,0.033523,0.078753,0.094184,0.972786,0.003223,-0.033230,0.221811
458035.218015,0.485099,-0.081248,9.914652,0.034055,0.080349,0.098973,0.972790,0.003197,-0.033102,0.221814
458035.219015,0.506605,-0.086027,9.890755,0.034055,0.078221,0.101633,0.972793,0.003171,-0.032993,0.221816
458035.220015,0.580685,-0.052572,10.029355,0.034055,0.07

图 imu 文件记录不全

3.解决方法

打开 imu 或者光栅文件, 查看最后一行是否记录完全, 若没有记录完整, 删 掉最后一行, 重新点击一键解算即可。

1.4 解算提示 srtk 有效数据数量为 0

1.问题现象

使用 SLAM GO POST Pro 时,点击一键解算或点云重定向时,软件提示【srtk 有效数据数量为 0,无固定解,或固定解波动超出范围】。

[15:19:03] 建图算法: 高精度建图!	
[15:37:13] 工程解算成功, 使用的稳定度参数: 5!	
[15:37:27] srtk有效数据数量为0,无固定解,或固定解波动超出范围!	
[15:37:37] 点云定向失败!	
[15:37:49] 建图失败!	
[15:37:52] 建图算法: 高精度建图!	

图 srtk 有效数据数量为0

2.产生原因

该问题产生原因为 srtk 固定率较低或固定解分布不均匀。

3.解决方法

该问题无法通过内业方式解决,只能重新采集,采集时应注意手机 APP 为固 定解状态,如果有长时间不固定,需要尽快走的开阔区域固定采集一段时间后再 继续采集。

一些无法长时间固定的场景,如:树林,四周有高楼遮挡,建议使用控制点 模式进行采集。

1.5 解算提示优化类型错误

1.问题现象

使用 SLAM GO POST Pro 时,点击一键解算或点云重定向时,软件提示【优 化类型错误】。

www.feimarobotics.com

[20:32:54] 建图算法: 高精度建图! [21:27:56] 工程解算成功,使用的稳定度参数: 5! [21:27:57] 优化类型错误! [21:28:07] 点云定向失败! [21:28:31] 处理失败!

图 优化类型错误

2.产生原因

该问题产生原因为新建工程时【平台】选错。

3.解决方法

通过编辑工程选择正确的采集平台,具体操作如下:

1.右键工程名称,点击编辑工程

图 编辑工程

2.在平台位置选择正确的平台

a.手持 rtk 选择加长杆模式

b.背包+SRTK 选择背包模式

FEIMA ROBOTICS	5			www	feimarobotics.com
	₩ 1	建向号 SLAM GO POST Pro	ß	×	
	名称: 日期: 设备: 平台: 路径:	Slam_Project 2024/1/23 SLAMI00 背包加全景相机 脊髓 背例加全景相机 算符加全景相机 学報	-		
	描述:				
			下一步>		

图 编辑平台

3.保存后重新一键解算或重定向。

注: 重新一键解算时,提示已有建图成果是否替换,选择否,不会进行点云 建图,直接处理定向以及后面的步骤。

1.6 解算提示 RTK 轨迹文件错误

1.问题现象

使用 SLAM GO POST Pro 时,点击一键解算或点云重定向时,软件提示【RTK 轨迹文件错误】。

2.产生原因

该问题产生原因为 RTK 轨迹文件对应错架次,用错 fmnav 文件。

3.解决方法

重新到 SRTK 内存卡内的 nav 文件夹内找到对应的 fmnav 文件。

1.fmnav 文件顺序和 SLAM 工程顺序一致, SLAM 数据不关机采集多组数据, 对应一个 fmnav 文件。

2.可以通过文件名称进行对应, fmnav 文件和 SLAM 原始数据均以采集时间 进行命名,时间相同为同组数据,时间差 1-2 分钟为正常现象。

COLOR_CAM	2024/1/19 17:28	文件夹	
OPTICAL_CAM	2024/1/19 17:28	文件夹	
REAL_SLAM	2024/1/19 17:28	文件夹	
20240119-085039_Ec_Data.fmraster	2024/1/19 8:57	FMRASTER 文件	8,917 KB
20240119-085039_Hp_Imu.fmimr	2024/1/19 8:57	FMIMR 文件	24,768 KB
🗋 20240119-085039_Lidar_Data.fmlidar	2024/1/19 8:57	FMLIDAR 文件	672,502 KE
🎱 20240119-085039_Lidar_Imu.imu	2024/1/19 8:57	IMU 文件	3,411 KB
20240119-085039_Lp_Imu.fmimr	2024/1/19 8:57	FMIMR 文件	10,470 KB
20240119-085039_Mark_Point.fmmark	2024/1/19 8:50	FMMARK 文件	1 KB
🍘 slam calib.yaml	2024/1/19 8:50	YAML 文件	1,319 KB
2024-1-19-8-48-18_9.fmnav	2024/1/19 8:58	FMNAV 文件	1,315 KB